Super-resolution microscopy reveals structural diversity in molecular exchange among peptide amphiphile nanofibres

نویسندگان

  • Ricardo M P da Silva
  • Daan van der Zwaag
  • Lorenzo Albertazzi
  • Sungsoo S Lee
  • E W Meijer
  • Samuel I Stupp
چکیده

The dynamic behaviour of supramolecular systems is an important dimension of their potential functions. Here, we report on the use of stochastic optical reconstruction microscopy to study the molecular exchange of peptide amphiphile nanofibres, supramolecular systems known to have important biomedical functions. Solutions of nanofibres labelled with different dyes (Cy3 and Cy5) were mixed, and the distribution of dyes inserting into initially single-colour nanofibres was quantified using correlative image analysis. Our observations are consistent with an exchange mechanism involving monomers or small clusters of molecules inserting randomly into a fibre. Different exchange rates are observed within the same fibre, suggesting that local cohesive structures exist on the basis of β-sheet discontinuous domains. The results reported here show that peptide amphiphile supramolecular systems can be dynamic and that their intermolecular interactions affect exchange patterns. This information can be used to generate useful aggregate morphologies for improved biomedical function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chitosan amphiphile coating of peptide nanofibres reduces liver uptake and delivers the peptide to the brain on intravenous administration.

The clinical development of neuropeptides has been limited by a combination of the short plasma half-life of these drugs and their ultimate failure to permeate the blood brain barrier. Peptide nanofibres have been used to deliver peptides across the blood brain barrier and in this work we demonstrate that the polymer coating of peptide nanofibres further enhances peptide delivery to the brain v...

متن کامل

Cytokinesis: Going Super-Resolution in Live Cells

Super-resolution fluorescence microscopy has emerged as a powerful tool for studying molecular organization, but mostly in fixed cells. New work using high-speed fluorescence photoactivation localization microscopy now reveals the organization of cytokinesis nodes and contractile rings in live fission yeast cells.

متن کامل

Open-source Single-particle Analysis for Super-resolution Microscopy with VirusMapper

Super-resolution fluorescence microscopy is currently revolutionizing cell biology research. Its capacity to break the resolution limit of around 300 nm allows for the routine imaging of nanoscale biological complexes and processes. This increase in resolution also means that methods popular in electron microscopy, such as single-particle analysis, can readily be applied to super-resolution flu...

متن کامل

Optical imaging of individual biomolecules in densely packed clusters

Recent advances in fluorescence super-resolution microscopy have allowed subcellular features and synthetic nanostructures down to 10–20 nm in size to be imaged. However, the direct optical observation of individual molecular targets (∼5 nm) in a densely packed biomolecular cluster remains a challenge. Here, we show that such discrete molecular imaging is possible using DNA-PAINT (points accumu...

متن کامل

Optical super-resolution microscopy in neurobiology.

Understanding the highly plastic nature of neurons requires the dynamic visualization of their molecular and cellular organization in a native context. However, due to the limited resolution of standard light microscopy, many of the structural specializations of neurons cannot be resolved. A recent revolution in light microscopy has given rise to several super-resolution light microscopy method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016